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Direct forcing methods are a class of methods for solving the Navier–Stokes equations on
nonrectangular domains. The physical domain is embedded into a larger, rectangular
domain, and the equations of motion are solved on this extended domain. The boundary
conditions are enforced by applying forces near the embedded boundaries. This raises
the question of how the flow outside the physical domain influences the flow inside the
physical domain. This question is particularly relevant when using a projection method
for incompressible flow. In this paper, analysis and computational tests are presented that
explore the performance of projection methods when used with direct forcing methods.
Sufficient conditions for the success of projection methods on extended domains are
derived, and it is shown how forcing methods meet these conditions. Bounds on the error
due to projecting on the extended domain are derived, and it is shown that direct forcing
methods are, in general, first-order accurate in the max-norm. Numerical tests of the pro-
jection alone confirm the analysis and show that this error is concentrated near the embed-
ded boundaries, leading to higher-order accuracy in integral norms. Generically, forcing
methods generate a solution that is not smooth across the embedded boundaries, and it
is this lack of smoothness which limits the accuracy of the methods. Additional computa-
tional tests of the Navier–Stokes equations involving a direct forcing method and a projec-
tion method are presented, and the results are compared with the predictions of the
analysis. These results confirm that the lack of smoothness in the solution produces a
lower-order error. The rate of convergence attained in practice depends on the type of forc-
ing method used.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The immersed boundary (IB) method was developed by Peskin for simulating the coupled motion of an elastic boundary
immersed in a viscous fluid [1]. Typically the fluid velocity is discretized on a Cartesian grid and the boundary is discretized
using a Lagrangian grid. One reason for the popularity of the IB method is that no internal boundary conditions are required
on the immersed boundary. The boundary moves with the local fluid velocity and these deformations generate forces which
affect the motion of the fluid.

Goldstein et al. [2] introduced a variation of the IB method for flows around solid objects. The solid objects are embedded
in a larger computational domain, and the velocity field is extended throughout the objects. The no-slip condition is enforced
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on the surface of the objects by applying a body force near the surfaces to bring the velocity to zero. As with the immersed
boundary method, complicated domains can be discretized using regular Cartesian grids. A disadvantage of this method is
that it requires choosing numerical forcing parameters which can make the equations stiff.

Another type of forcing method was introduced by Mohd-Yusof [3] that does not require numerical forcing parameters.
The forcing is computed from the algebraic equations in the discretized problem. This approach avoids the stiffness encoun-
tered from the penalty forces used in previous forcing methods. As this method has gained popularity, many variations on
how the forcing is applied have appeared in the literature [4–8]. These methods are often referred to as direct forcing methods.

Projection methods are often used to enforce the divergence-free constraint in incompressible flow. The momentum
equation is advanced in time to give an intermediate velocity that is not required to be divergence-free. This intermediate
velocity is then projected onto the subspace of divergence-free fields to find the velocity at the next time step. Performing
the projection involves solving a Poisson equation, which when used with a forcing method, is often solved over the ex-
tended computational domain. Thus the flow outside the physical domain necessarily influences the flow on the physical
domain, even if these two subdomains were effectively decoupled in the solution of the momentum equation.

We note that the projection need not be performed over the extended domain. There are several methods for discretizing
the Poisson equation only on the fluid domain using a Cartesian grid, such as the embedded boundary method [9] or the
ghost-fluid method [10]. These methods have been used in conjunction with projection methods and immersed boundary
methods; see, for example, [11–13]. However, in many, if not most, forcing methods the projection is performed over the
entire domain. Further, the projection can be the most computationally expensive step of a fluid solver, and solving on a reg-
ular domain allows the straightforward use of fast solvers based on FFTs or geometric multigrid. In this paper we focus on
methods in which the projection is performed over the entire domain.

How the flow outside the domain influences the flow in the physical domain is not well understood. In spite of the fact
that direct forcing and projection methods are commonly used together successfully, it is not clear that the solution from this
combination of methods should converge to the correct solution. Several authors have already commented on this issue. Sai-
ki and Biringen [14] comment that they found it necessary to apply forces on the extension to obtain convergence to the
correct solution. Fadlun et al. [4] experimented with different treatments of flow on the extension, and they concluded that
the flow on the extension has little effect on the physical flow. Similar observations were reported by Zhang and Zheng [8].
Recently, Domenichini [15] performed a series of numerical tests aimed at understanding the effect of using projection
methods and direct forcing methods. The problem has not yet been analyzed to understand why forcing methods do seem
to work with projection methods. A deeper understanding is necessary in order to drive the development of more accurate
methods.

In this paper we explore the performance of projection methods when the projection is performed over an extended do-
main. We show that if the intermediate velocity is continuous across the embedded boundaries and close, in some sense, to a
divergence-free field, then the error produced by performing the projection on the extended domain is small. We show that
the intermediate velocity meets these conditions, and the error introduced by solving on the extended domain is of the same
size as the error of the projection method itself.

The intermediate velocity generated using a forcing method generally has a jump in the first derivative near the embed-
ded boundaries. We analyze the spatially discrete projection and show that this lack of smoothness introduces a first-order
error during the projection step. Numerical tests of the projection alone show that this error is localized near the embedded
boundary, and so higher rates of convergence are achieved in integral norms. These results show that forcing methods are
generally first-order accurate in the max-norm, but the accuracy in integral norms depends on how the forcing is performed
in the momentum equation.

The remainder of the paper is organized as follows. We briefly describe the main ideas behind direct forcing and projec-
tion methods in Sections 2 and 3, respectively. Our analysis of projections on extended domains, including the spatially dis-
crete problem, appears in Section 4. In Section 5, numerical tests validating our analysis and further exploring the accuracy of
direct forcing methods are presented. The effect of the smoothness of the extended field on the accuracy of the projection is
demonstrated in Section 5.1, and in Section 5.2, the accuracy of projection methods for solving the Navier–Stokes equations
is considered. Finally, in Section 6 we describe how our results explain some observations in previous papers, and we discuss
some ideas for developing more accurate methods.
2. Direct forcing methods

Direct forcing methods are a class of numerical methods for solving the incompressible Navier–Stokes equations
qðut þ u � ruÞ ¼ �rpþ lDuþ f ; ð1Þ
r � u ¼ 0 ð2Þ
on a nonrectangular domain using a Cartesian grid. As usual, u is the fluid velocity, p is the pressure, q is the density, l is the
dynamic viscosity, and f is a body force density acting on the fluid. The physical domain is embedded in a larger rectangular
domain, and the boundary conditions on the physical boundaries are enforced by applying a localized force on the Cartesian
grid. The basic idea of choosing the force is very simple. Consider the explicit, discrete-time update for the momentum
equation:
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unþ1 � un

Dt
¼ G þ f ; ð3Þ
where the term G represents the pressure gradient, advection terms, and viscous terms. The force is selected so that on the
boundary unþ1 ¼ Unþ1

b , where Unþ1
b is the given velocity on the boundary at time level nþ 1. The appropriate force is com-

puted from simply rearranging Eq. (3):
f ¼ Unþ1
b � un

Dt
� G: ð4Þ
This illustrates the idea behind choosing the force, but to apply the method one must specify where this forcing term is ap-
plied and decide how to handle implicit discretizations.

As written, the equation for the force (4) is slightly ambiguous because the velocity un is computed on the Cartesian grid
and the boundary velocity Unþ1

b is given on the embedded boundary which does not align with the Cartesian grid. There are
two variations on how this force is computed in practice: on the embedded boundary [6–8,16] and on the Cartesian grid [3–
5].

In order to compute the forcing term on the embedded boundary, the velocity from the Cartesian grid, un, and the explicit
terms, G, must be interpolated to the embedded boundary. Similarly, the force must be transmitted back to the Cartesian grid
where the fluid equations are solved. The methods of interpolating the velocity and distributing the force are typically based
on discrete delta functions, as in the original immersed boundary method. Computing the forces on the embedded boundary
and spreading it to the grid using discrete delta functions is in some ways easier than computing the force on the grid. How-
ever, the use of delta functions limits the order of accuracy near the boundary to first-order in space [17–19]. We note that a
recent method has been proposed which spreads the force to grid, but the spreading is not based on discrete delta functions
[16]. This new method may yield higher-order accuracy, because the idea behind computing the forces is more similar to
methods that compute the forces on the grid, which do not limit the accuracy.

Methods that compute the forcing term directly on the Cartesian grid avoid the transfer of data back and forth between
the boundary and the grid. The physical boundary condition is given at the embedded boundary, and so one needs a way to
represent the boundary conditions on the Cartesian grid. This is typically accomplished using interpolation/extrapolation.
For example, the boundary condition can be enforced by requiring that at points on the Cartesian grid adjacent to the embed-
ded boundary the velocity be interpolated from the boundary points and nearby points.

Once the representation for the boundary condition on the Cartesian grid has been chosen, Eq. (4) can be used to compute
the necessary forces to satisfy this boundary condition. However, the momentum equation is often discretized implicitly in
time, which means that the term G in (4) depends on Unþ1

b . There are two typical methods for handling implicit discretiza-
tions. Treating the force as an additional unknown, Eqs. (3) and (4) could be solved simultaneously for the velocity and force.
Alternatively a predictor–corrector method could be used.

3. Projection methods

In the previous section we described the ideas of direct forcing methods for solving only the momentum equation (1).
Projection methods are a popular class of methods for solving the incompressible Navier–Stokes equations that avoid solving
the momentum equation and continuity equation simultaneously [20,21]. In a projection method, the momentum equation
(1) is advanced in time without enforcing the incompressibility constraint to give an intermediate velocity. This intermediate
velocity is then projected onto the space of divergence-free fields to obtain the incompressible velocity field.

The projection is accomplished by computing the Hodge decomposition of the intermediate velocity field. That is, any
sufficiently regular vector field u� can be decomposed into the sum of a divergence-free field and a gradient field:
u� ¼ uþr/; ð5Þ
where r � u ¼ 0. Taking the divergence of this equation gives the Poisson equation,
D/ ¼ r � u�: ð6Þ
With suitable boundary conditions on /, this equation can be solved for /, and u can then be computed using (5).
The use of projection methods with direct forcing methods raises some interesting questions. The projection is performed

over a computational domain that includes the physical domain and regions that are outside the physical domain. Since the
projection is performed by solving a Poisson equation over this extended domain, clearly the velocity outside the physical
domain influences the flow in the physical domain. In the following section we investigate under what circumstances the
projection can be performed on the extended domain without affecting results on the physical domain.

4. Projections on extended domains

Suppose we are solving the incompressible Navier–Stokes equations (1) and (2) on a domain X1 with the velocity given on
@X1. Throughout this section, we assume that all domains considered are sufficiently regular for the purposes of our argu-
ments. Let u� be the intermediate velocity field that arises from advancing the momentum equation in time while ignoring
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the divergence-free constraint. We assume that u� satisfies the boundary conditions for u. The intermediate velocity is
decomposed into the sum of a gradient field and a divergence-free field as in (5). The decomposition is performed by solving
(6) in X1 with homogeneous Neumann boundary conditions, and then the divergence-free velocity is found from (5). Note
that a solution to this Poisson problem exists by the divergence theorem and the assumption that u and u� are equal on the
boundary of X1. We denote the projection operator which projects fields onto the space of divergence-free fields on X1 by P1,
so that
Fig. 1.
extende
P1ðu�Þ ¼ u; ð7Þ
where u� and u are as in (5).
Suppose that X1 is extended to the larger domain X ¼ X1 [X2. Let C ¼ @X1 \ @X2 denote the interface between the ori-

ginal domain, X1, and the extension, X2. One such example is pictured in Fig. 1. Let u�e be an L2 extension of u� to all of X such
that u�e ¼ u� on X1. As in (5), assuming that u�e is sufficiently regular (r � u�e 2 L2ðXÞ is enough) and that

R
Xr � u�e ¼ 0 (a nec-

essary and sufficient condition for the solvability of the following problem (9) and (10)), this extended velocity can be
decomposed
u�e ¼ ue þr/e; ð8Þ
where ue and r/e are L2 vector fields with r � ue ¼ 0 (in the sense of distributions), by solving
D/e ¼ r � u�e on X; ð9Þ
@/e

@n
¼ 0 on @X: ð10Þ
Analogously to P1, we denote the operator which projects fields onto the space of divergence-free fields on the extended do-
main X by Pe, so that
Pe u�e
� �

¼ ue; ð11Þ
where u�e and ue are described above.
Ideally, the restriction of Pe u�e

� �
to X1 would equal P1ðu�Þ. In other words, the divergence-free velocities that result from

projecting on the extended domain and projecting on the original domain would be identical. Clearly, this will not always be
the case, because this would mean that the projection is independent of the choice of the extension.

In this section, we show that while it is always possible to choose an extension that does not affect the projection, this is
impractical. However, we demonstrate that if the intermediate velocity is in some sense close to a divergence-free field, then
the projected velocities are also close. As we argue in Section 4.3, this is exactly the case in projection methods, and the error
of projecting on the extended domain is the same size as the error of the projection method on the original domain. In Sec-
tion 4.4 we argue that the velocity fields projected in direct forcing methods are generally only continuous across the embed-
ded boundary. This lack of smoothness introduces additional error in the spatially discrete problem, which is analyzed in
Section 4.5.

4.1. Existence of an extension

We first show that it is possible to extend u� to all of X in such a way that P1ðu�Þ ¼ Pe u�e
� �

on X1. By performing the pro-
jection only on X1 we obtain the divergence-free field P1ðu�Þ ¼ u and the gradient fieldr/, as in Eq. (5). We can extend u and
The physical domain, X1, is embedded in the larger domain X ¼ X1 [X2, and C ¼ @X1 \ @X2 denotes the interface between the physical domain and
d domain.
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/ to all of X so that the extension of u is divergence-free. Suppose both extensions are smooth, and denote them by ue and /e.
Define the extended velocity field by
u�e ¼ ue þr/e: ð12Þ
The projection of this velocity field gives Peðu�eÞ ¼ ue, which by construction equals the velocity P1ðu�Þ ¼ u on X1. Therefore
such an extension exists.

Although we have shown that the intermediate velocity can be extended in such a way as to give the ‘‘correct” projected
velocity, the method used in the proof above requires that we first project on the original domain, which defeats the purpose
of extending in the first place.

4.2. Comparison of projected fields

In general it is difficult to determine conditions on the extension so that P1ðu�Þ ¼ Pe u�e
� �

without knowledge of the pro-
jection of u� on X1. However, in special cases, such as when the gradient portion vanishes on C, any sufficiently smooth
divergence-free extension will preserve the projection. This is the case when the intermediate velocity is divergence-free
to begin with. Considering divergence-free extensions of divergence-free fields does not seem to be interesting or useful,
but this idea leads us to consider the case when the intermediate velocity and its extension are close to divergence-free
fields.

We compare P1ðu�Þ to Pe u�e
� �

in the physical domain X1 in the L2 norm. By the decompositions (5) and (8) and the fact that
u� ¼ u�e in X1,
kPe u�e
� �

� P1ðu�Þk ¼ kPe u�e
� �

� u�e þ u� � P1ðu�Þk 6 kr/ek þ kr/k: ð13Þ
A consequence of inequality (13) is that if u� and u�e are close to being divergence-free in the sense that the difference be-
tween each of these fields and their projections is small, then so is the difference between the projections of the two fields. As
a result, if the intermediate field is close to the desired divergence-free field, then the projection (on the extended domain) is
just as close to the desired field. As we discuss below, this result is useful in the context of projection methods because the
intermediate velocity is not arbitrary. It is close to the desired divergence-free velocity field, and this is one key reason why
the projection can be performed on the extended domain and still converge to the appropriate solution.

In the case when u� and u�e are both divergence-free, inequality (13) shows that Pe u�e
� �

equals P1ðu�Þ in X1, as claimed
above. This suggests that the velocity on the extension be chosen to be as close to a divergence-free field as possible. Thus,
a velocity that is divergence-free on the extension which is easy to generate is a reasonable choice.

4.3. Intermediate velocity in projection methods

In this section we show that the intermediate velocity field in a projection method is indeed close to a divergence-free
field. For simplicity we consider the time-dependent Stokes equations. Suppose we want to solve the system
ut ¼ Du�rp; ð14Þ
r � u ¼ 0 ð15Þ
in X1 with Dirichlet boundary conditions, and we are given the initial velocity uðx; t0Þ and pressure p0ðxÞ ¼ pðx; t0Þ. We hold
the pressure constant in time, and advance the momentum equation in time to t ¼ t0 þ Dt by solving
u�t ¼ Du� � rp0ðxÞ: ð16Þ
The approximate solution to (14) and (15) is then generated by performing the projection
uðx; t0 þ DtÞ � P1u�ðx; t0 þ DtÞ: ð17Þ
To show that u�ðx; t0 þ DtÞ is close to a divergence-free field, we expand u�ðx; t0 þ DtÞ and uðx; t0 þ DtÞ as Dt ! 0 and show
that uðx; t0 þ DtÞ ¼ u�ðx; t0 þ DtÞ þ OðDt2Þ. First, the expansion of uðx; t0 þ DtÞ is
uðx; t0 þ DtÞ ¼ uðx; t0Þ þ Dtutðx; t0Þ þ
Dt2

2
uttðx; t0Þ þ OðDt3Þ: ð18Þ
Using Eq. (14) to eliminate one time derivative gives
uðx; t0 þ DtÞ ¼ uðx; t0Þ þ DtðDuðx; t0Þ � rpðx; t0ÞÞ þ
Dt2

2
ðDutðx; t0Þ � rptðx; t0ÞÞ þ OðDt3Þ: ð19Þ
Similarly,
u�ðx; t0 þ DtÞ ¼ u�ðx; t0Þ þ DtðDu�ðx; t0Þ � rp0ðxÞÞ þ
Dt2

2
@

@t
ðDu�ðx; tÞ � rp0ðxÞÞjt¼t0

þ OðDt3Þ: ð20Þ
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Because u�ðx; t0Þ ¼ uðx; t0Þ all occurrences of u� can be eliminated on the right side of this equation to get
Fig. 2.
The dis
u�ðx; t0 þ DtÞ ¼ uðx; t0Þ þ DtðDuðx; t0Þ � rp0ðxÞÞ þ
Dt2

2
ðDutðx; t0ÞÞ þ OðDt3Þ: ð21Þ
Comparing the expansions (19) and (21) and using that p0ðxÞ ¼ pðx; t0Þ, we get that
u�ðx; t0 þ DtÞ ¼ uðx; t0 þ DtÞ þ Dt2

2
rptðx; t0Þ þ OðDt3Þ: ð22Þ
Therefore, the intermediate velocity that is projected is within OðDt2Þ of a divergence-free field. Furthermore,
P1u�ðx; t0 þ DtÞ ¼ uðx; t0 þ DtÞ þ OðDt3Þ, since the second-order term is a gradient field.

4.4. Continuity of extensions from direct forcing

The intermediate velocity that is generated by a forcing method will be continuous across the embedded boundaries be-
cause the forcing enforces the Dirichlet boundary condition. However, the solution will not generally be smooth across the
embedded boundaries. We argue via a simple example why the extended intermediate velocity is only continuous.

Consider the solution to the forced diffusion equation in one dimension on the semi-infinite domain x > 0 with homoge-
neous Dirichlet boundary condition uð0; tÞ ¼ 0. Discretize the entire real line using the points xj ¼ ðjþ 1=2Þh, and solve the
discrete equations for all j. The boundary condition is enforced by applying a force at the first grid point of the extension, x�1.
The force applied is chosen to enforce the algebraic condition un

�1 ¼ �un
0 for all n, where un

j ¼ uðxj;nDtÞ.
The discrete solution at the grid points in the extension j < �1 are coupled to the physical domain only through un

�1. We
may view the solution in the extension as the solution to the unforced heat equation on the semi-infinite domain x < �h=2
with the time-dependent Dirichlet boundary condition uð�h=2;nDtÞ ¼ un

�1. Because un
�1 ¼ �un

0 ¼ OðhÞ, the solution on the
extension is OðhÞ. Therefore as h! 0, the solution in the extension converges to zero, while the solution in the physical do-
main converges to the solution of the PDE, which is zero at the boundary, but need not have zero derivative. Therefore the
discrete solution on the extended domain converges to a function that is continuous but not necessarily differentiable across
the interface between the physical domain and the extension. This is illustrated in Fig. 2.

When the intermediate velocity is only continuous across the embedded boundaries, it is not obvious that projection and
decomposition (8) can be performed, since this involves derivatives of functions that are not differentiable. As mentioned
previously, we only need that r � u�e 2 L2ðXÞ in order to perform the projection. In general, the intermediate velocity is dif-
ferentiable on the closure of X1, differentiable on the closure of X2, and continuous in X. In particular, u�e is continuous across
C. In other words, there could be a jump in the one-sided derivatives of the components of u�e on C. As a result, the compo-
nents of u�e are weakly differentiable in X, with derivatives that are bounded, and thus r � u�e 2 L2ðXÞ. Therefore, the projec-
tion can be applied to the intermediate velocity in direct forcing methods despite the lack of smoothness.

4.5. Spatially discrete problem

In this section we consider the spatially discrete problem, and we show that when the extended velocity is not smooth
across C, the error in the discrete problem is larger near this interface than in the rest of the domain. Although the scheme
converges as the mesh spacing goes to zero, the order of accuracy is reduced by the lack of smoothness.

Suppose that the extended domain, X, is discretized into regular cells of width h with centers
ðxi; yjÞ ¼ ððiþ 1=2Þh; ðjþ 1=2ÞhÞ. Let uh ¼ ðuh;vhÞ represent a discrete velocity field and /h represent a discrete scalar field.
We consider the standard staggered discretization, so that the horizontal component of the velocity, uh, is stored at the ver-
tical cell edges, the vertical component of the velocity, vh, is stored at the horizontal cell edges, and scalars (e.g. /h) are stored
at the cell center. See Fig. 3.
solution O(h)
on extension

u=0 u=0

Physical DomainExtension

Refine mesh

Illustration of solution behavior from a forcing method for the one-dimensional forced diffusion equation with homogeneous boundary condition.
crete solution typically converges to a function that is continuous but not differentiable across the embedded boundary.



Fig. 3. Example of a staggered grid discretization. The velocity field uh ¼ ðuh; vhÞ is stored at the cell edges as shown, and scalar fields are stored at the cell
centers.
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Let D denote the discrete divergence operator, defined as
ðDuhÞi;j ¼
uh

iþ1=2;j � uh
i�1=2;j

h
þ

vh
i;jþ1=2 � vh

i;j�1=2

h
: ð23Þ
Let G be the discrete gradient operator, G/ ¼ ðG1/
h;G2/

hÞ, where the first component is
G1/
h

� �
i�1=2;j

¼
/h

i;j � /h
i�1;j

h
; ð24Þ
and similarly the second component is
G2/
h

� �
i;j�1=2

¼
/h

i;j � /h
i;j�1

h
: ð25Þ
As with the continuous problem, a discrete vector field uh� can be decomposed into the sum of a discretely divergence-free
field and a discrete gradient by solving the discrete Poisson equation
L/h ¼ DG/h ¼ Duh�; ð26Þ
where L is the standard five-point, second-order accurate, discrete Laplacian. The discretely divergence-free field is then
uh ¼ uh� � G/h: ð27Þ
In the absence of an internal interface, the discrete projection is a second-order accurate approximation to the continuous
projection. We next address how the internal interface affects the accuracy of the discrete approximation. We define regular
grid cells as those whose centers and four edge velocities lie entirely in X1 or entirely in X2, i.e. the cell center and the four
centers of the edges are all on the same side of the interface C. Other grid points are called irregular points. See Fig. 4.

We assume that the extended velocity field, ue, is at least C3 in X1 and in X2. For the regular grid points
Duh
e ¼ r � ue þ Oðh2Þ; ð28Þ
where the truncation error term is proportional to the third derivatives of ue. At the irregular grid points, the truncation error
of the derivatives depends on the smoothness of the velocity across C.

To illustrate the effect of smoothness on the spatially discrete problem, consider a scalar function gðxÞ defined by
gðxÞ ¼
g�ðxÞ if x < x0;

gþðxÞ if x > x0;

�
ð29Þ
where we assume that both g� and gþ are smooth. The centered difference of g at x0 is
gðx0 þ h=2Þ � gðx0 � h=2Þ
h

¼ 1
h
ðgþðx0Þ � g�ðx0ÞÞ þ

1
2

gþx ðx0Þ þ g�x ðx0Þ
� �

þ h
8

gþxxðx0Þ � g�xxðx0Þ
� �

þ h2

48
gþxxxðx0Þ þ g�xxxðx0Þ
� �

þ Oðh3Þ: ð30Þ
Thus if g is at least C2 at x0, then the centered difference is second-order accurate at x0. If g is only C1, then this centered
difference is first-order accurate, and if g is only C0, then the error in the approximation is order one. Although we considered
the centered difference at x0 for simplicity, the orders of accuracy hold for the centered difference about any point in the
interval ðx0 � h=2; x0 þ h=2Þ.



Γ

Fig. 4. The open circles denote the centers of regular grid cells; the cell center and all four centers of the edges are on the same side of the interface. The
solid circles represent the centers of the irregular cells.
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At the irregular grid cells, the discrete divergence involves velocities from both sides of the interface. If the intermediate
velocity is C2 across the interface C, then the truncation error at the irregular points is Oðh2Þ, which is the same as at the
regular points, and the discrete projection is second-order accurate. If the intermediate velocity is only C1 across the inter-
face, then the truncation error in the discrete divergence is OðhÞ at the irregular points. The error term is proportional to the
jump in the second derivative. It has long been observed in practice that if the truncation error is OðhÞ on a lower dimen-
sional set of points (codimension one in the limit) and Oðh2Þ everywhere else, then the error in the solution of the discrete
Poisson equation is Oðh2Þ in the max-norm. However, it was not until recently that this result was rigorously proved by Beale
and Layton [22].

Next consider the most interesting case in which the velocity is only C0 across the interface, which is the most relevant
case for understanding direct forcing methods. In this case, the truncation error of the discrete divergence is Oð1Þ at the irreg-
ular points, i.e. this is an inconsistent discretization. Although Theorem 2.1 from [22] does not apply in this case, the lemmas
used to prove the theorem can be adapted to give bounds on the error.

We summarize two lemmas from [22] that we use to estimate the error in the discrete projection. Let f h
irr be a discrete

scalar function that is nonzero only on irregular cells. By Lemma 2.2 of [22], there exists a vector grid function Fh such that
f h
irr ¼ DFh; ð31Þ
and
kFh
kk1 6 Chkf h

irrk1; ð32Þ
where Fh
k is the kth component of Fh, for some constant C independent of the grid spacing h. Lemma 2.3 of [22] gives a bound

on the solution to the discrete Poisson equation in terms of the size of the forcing function at the regular and irregular grid
points. Specifically, suppose that /h is the solution to
L/h ¼ f h
reg þ f h

irr ¼ f h
reg þ DFh; ð33Þ
with homogeneous Dirichlet boundary conditions. Then
k/hk1 6 C0 kf h
regk2 þ

X
k

kFh
kk1

 !
; ð34Þ
and
kG/hk1 6 C1 logðh�1Þ kf h
regk2 þ

X
k

kFh
kk1

 !
; ð35Þ
where the constants C0 and C1 are independent of the grid spacing. Although this second lemma applies to the Dirichlet
problem, it can be adapted to the Neumann problem as discussed in [22].

To apply these lemmas to the discrete projection, consider the case when u is a divergence-free field on X1, and ue is an
extension of u to all of X that is divergence-free and continuous (but not differentiable) across C. (Note that the error bounds
derived below also apply to the case when the velocity projected is not divergence-free.) Let uh

e be the representation of ue on
the grid with spacing h. Then
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Duh
e ¼

Oðh2Þ at regular points;
Oð1Þ at irregular points:

(
ð36Þ
To perform the discrete projection, we solve
L/h ¼ Duh
e : ð37Þ
Comparing this equation with (33), we use (31), (32) and (35) to arrive at the bound on the gradient
kG/hk1 6 C1 logðh�1ÞðOðh2Þ þ OðhÞÞ ¼ Oðh logðhÞÞ: ð38Þ
The projected discrete velocity is then
Puh
e ¼ uh

e � G/h ¼ uh
e þ Oðh logðhÞÞ: ð39Þ
Therefore as h goes to zero the discrete projection operator converges to the continuous projection operator in the max-
norm. Although this bound on the error is less than first-order, as we show in our numerical tests, we observe a first-order
error in practice in the max-norm, which is consistent with the observations from [22]. In practice it is difficult to distinguish
between Oðh logðhÞÞ and OðhÞ.

The bound above applies to the max-norm of the error. Because the larger truncation errors are concentrated near the
interface C one would hope that the errors are also concentrated near the interface. Our numerical tests confirm this, and
we obtain higher rates of convergence in the 1-norm and 2-norm as discussed in Section 5.1.1.

5. Computational tests

5.1. Projection

We begin by demonstrating how the smoothness of the extension affects the accuracy of the discrete projection. Since we
are interested in the projection of nearly divergence-free fields, we apply the discrete projection to divergence-free fields.
The first test problem is only continuous across an embedded boundary. We verify our bound on the max-norm of the error
and demonstrate that the errors converge at a faster rate in the 1-norm and 2-norm, indicating that the additional error
introduced by the lack of smoothness is indeed concentrated near the interface.

The domain used in these problems is a circle of radius R. This circular domain is embedded into a larger square domain.
In the notation of the previous section,
X1 ¼ fðx; yÞ : x2 þ y2 < R2g; ð40Þ
X ¼ ½�L=2; L=2� � ½�L=2; L=2�; ð41Þ
X2 ¼ X nX1: ð42Þ
In the computational tests, L ¼ 1 and R ¼ 0:4. We use a staggered grid and a MAC projection as described in Section 4.5.

5.1.1. Projection of a C0 divergence-free velocity
For a C0 divergence-free test problem, we begin with a rotational flow defined by the angular velocity
uh ¼ Ar2ðR� rÞHðR� rÞ; ð43Þ
where
A ¼ 27
4R3 ; ð44Þ
so that the maximum velocity is 1, and H is the Heaviside function. In the basis of rectangular coordinates, the velocity field is
u ¼ ArðR� rÞHðR� rÞðyi� xjÞ; ð45Þ
where i and j are the unit direction vectors. This velocity field is divergence-free almost everywhere, but it is not differen-
tiable across the interface r ¼ R. The error introduced by the discrete projection is
eh ¼ uh � Puh; ð46Þ
which is equal to the discrete gradient field G/h.
Table 1 shows the 1-norm, 2-norm, and max-norm of the error in the first component of the velocity from the discrete

projection as the grid spacing decreases. By symmetry, the error is the same in both components of the velocity. The
max-norm of the error shows first-order convergence (or slightly less than first-order), as predicted by our analysis. The con-
vergence in the 1-norm and 2-norm is more rapid. The error shows second-order convergence in the 1-norm, and order 1.5 in
the 2-norm as demonstrated by the log plots of the errors in Fig. 5. These orders of convergence in the integral norms indi-
cate that the errors are first-order near the embedded boundary and second-order away from the boundary. In Fig. 6 we plot



Table 1
Errors from a refinement study of the discrete projection of the velocity field (45) which is only C0 across the internal boundary for different grid spacings h. The
error in the first component is shown. By symmetry, the norms of the errors are identical in the two components. The convergence is second-order in the 1-
norm, order 1.5 in the 2-norm, and first-order in the max-norm.

h kek1 kek2 kek1

2�5 8:62 � 10�4 1:86 � 10�3 1:67 � 10�2

2�6 3:28 � 10�4 8:42 � 10�4 8:88 � 10�3

2�7 6:83 � 10�5 2:81 � 10�4 5:57 � 10�3

2�8 1:94 � 10�5 1:07 � 10�4 3:08 � 10�3

2�9 5:02 � 10�6 3:73 � 10�5 1:52 � 10�3
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Fig. 5. Plots of the errors from the refinement study data in Table 1 for the C0 velocity field. For reference, lines of slope 1, 1.5, and 2 are displayed, which
indicate first-order convergence in the max-norm, order 1.5 convergence in the 2-norm, and second-order in the 1-norm, respectively.
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Fig. 6. Plot of the error from the discrete projection of the velocity field (45) which is only C0 across the boundary R ¼ 0:4. The error in the first component is
plotted. The errors are much larger near the boundary than in the remainder of the domain.
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the errors on the 32� 32 grid, and we see that indeed the errors are much larger near the embedded boundary than in the
rest of the domain.

5.1.2. Projection of a C1 divergence-free velocity
For comparison, we consider a velocity field which is divergence-free and C1 across the internal boundary. We again use a

rotational flow with angular velocity
uh ¼ Ar2ðR� rÞ2HðR� rÞ; ð47Þ
and the normalization is



Table 2
Errors from a refinement study of the discrete projection of the velocity field (47) which is C1 across the internal boundary for different grid spacings h. The
error in the first component is shown. By symmetry, the norms of the errors are identical in the two components. The convergence is second-order in all norms.

h kek1 kek2 kek1

2�5 3:14 � 10�4 4:23 � 10�4 1:41 � 10�3

2�6 7:31 � 10�5 9:57 � 10�5 3:46 � 10�4

2�7 1:81 � 10�5 2:36 � 10�5 9:18 � 10�5

2�8 4:50 � 10�6 5:83 � 10�6 2:29 � 10�5

2�9 1:13 � 10�6 1:46 � 10�6 5:83 � 10�6
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Fig. 7. Plot of the error of the discrete projection of the velocity field (47) which is C1 across the boundary R ¼ 0:4. The error in the first component is
plotted. The errors near the boundary are comparable in size to those throughout the domain.
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A ¼ 16
R4 ; ð48Þ
so that, as before, the maximum velocity is 1, and H is the Heaviside function. Again the error introduced by the discrete
projection is (46).

Table 2 shows the 1-norm, 2-norm, and max-norm of the error in the projection as the grid spacing decreases. As ex-
pected, the convergence in all norms is second-order, even though the local truncation error is first-order near the embedded
boundary. In Fig. 7 we plot the errors for the 32� 32 grid, and we see that the error near the boundary is comparable in size
to the error in the rest of the domain.

5.2. Navier–Stokes tests

In the previous section we verified the results of our analysis on the accuracy of the projection alone. In this section we
consider the accuracy of projection methods for solving the Navier–Stokes equations. We solve the incompressible Navier–
Stokes equations in two spatial dimensions for the flow through a channel with a circular obstacle inside the channel. The
computational domain is ½0;3� � ½0;1� (dimensionless) with periodic boundary conditions in the horizontal direction and no-
slip boundary conditions on the top and bottom of the channel. There is a stationary circular obstacle with radius 0.2 with
center (1,0.4) on which the flow satisfies the no-slip condition. The Reynolds number is set to 50. The fluid is initially at rest;
we drive the flow with a constant background force in the x-direction, f ¼ ð8:0;0ÞT, and we solve for the velocity field at time
t ¼ 0:1. The maximum magnitude of the velocity field is approximately 1.51. The maximum horizontal velocity is also
approximately 1.51, and the maximum vertical velocity is about 0.55. All reported errors are absolute errors. The velocity
field is displayed in Fig. 8.

5.2.1. Zero velocity on the extension
The computational domain is discretized using a staggered grid. The momentum equation is solved only on the physical

domain (outside the obstacle). Before projecting, the velocity inside the obstacle is set to zero, as motivated by the discussion
in Section 4.2. To advance the momentum equation for the intermediate velocity, the advection terms are discretized explic-
itly using a second-order Adams–Bashforth method, and the pressure gradient is lagged from the previous time step. A
Crank–Nicolson discretization is used for the viscous terms. At grid points adjacent to the obstacle, the stencil of the discrete
Laplacian is modified to include the point(s) on the boundary of the obstacle. For example, in one dimension, suppose that
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Fig. 8. The velocity field through a two dimensional channel with a circular obstruction which is used to test the accuracy of the Navier–Stokes solver.
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xj ¼ jh is in the physical domain, xjþ1 ¼ ðjþ 1Þh is outside the physical domain, and the obstacle boundary is located at
xb ¼ ðjþ aÞh for some 0 < a < 1. The discrete second derivative at point j is
Table 3
Refinem
continu

h

2�5

2�6

2�7

2�8

Orde
ðuxxÞj ¼
2auj�1 � 2ð1þ aÞuj þ 2ub

að1þ aÞh2 þ OðhÞ: ð49Þ
Although the local truncation error is first-order in space, the error that results in the solution is second-order.
The solver used for the momentum equation alone (no projection) is second-order accurate in space and time. This has

been verified with computational tests (results not shown). The projection is performed on the extended domain,
½0;3� � ½0;1� (i.e. inside and outside of the obstacle). The intermediate velocity on the extension is zero (inside the obstacle).
Thus the velocity is divergence-free on the extension, and because the velocity satisfies the no-slip condition on the obstacle,
the velocity is continuous across the obstacle boundary. For more details on the discretization, see Appendix A.1.

We perform a refinement study to estimate the rate of convergence. On the coarsest mesh, the space step is 2�5 and time
step is 10�2. Time and space are refined simultaneously by factors of two. Since an analytic solution for the velocity is not
available, we estimate the error on a given mesh by subtracting the numerical solution on the next finest mesh. The velocity
on the finer mesh must be interpolated to the coarser mesh, and this interpolation is appropriately modified near the obsta-
cle boundary.

The results of the refinement study are displayed in Table 3. We report the norms of the estimated errors for the 1-norm,
2-norm, and max-norm for both the horizontal and vertical components of the velocity field, u and v, respectively. The order
of convergence is computed from fitting a line through the log of the norm of the error versus the log of the grid spacing.

Our analysis predicts that the rate of convergence should be first-order in the max-norm, and our previous numerical
tests of the projection suggest that the convergence will be second-order in the 1-norm and order 1.5 in the 2-norm. These
are roughly the orders that we observe for the vertical velocity, v. For the horizontal velocity, the rate of convergence is
slightly better than predicted in the 2-norm and in the max-norm. The convergence appears to be second-order in the 2-
norm.

Recall that the source of the lower-order errors is related to the jumps in the derivatives of the velocity across the embed-
ded boundary. In the tests involving only the projection presented in Section 5.1.1, we constructed the velocity so that the
jump in the derivative was uniform around the embedded boundary. In this test involving the Navier–Stokes equations, the
jump in the velocity is not uniform around the embedded boundary, and as a result we observe higher rates of convergence.

5.2.2. Forcing method
For comparison, we repeat this test using a forcing method to solve the momentum equation. We use the method of Kim

et al. [5]. The forces are chosen so that at the first grid point on the extended domain (inside the obstacle in this case) the
intermediate velocity is a linear extrapolation of the velocity from the physical domain.

This method is in the form of a predictor–corrector. A predicted velocity is used to estimate the force necessary to ensure
that the velocity at the first cell in the extension is the extrapolation from the physical domain. This force is then applied at
ent study for Navier–Stokes equation in which the momentum equation is solved only on the physical domain, and then the solution is extended
ously with a divergence-free field (identically zero).

u v

kek1 kek2 kek1 kek1 kek2 kek1

1:46 � 10�2 1:90 � 10�2 7:93 � 10�2 2:96 � 10�3 7:85 � 10�3 1:28 � 10�1

3:89 � 10�3 5:02 � 10�3 3:23 � 10�2 7:52 � 10�4 1:95 � 10�3 4:31 � 10�2

9:43 � 10�4 1:30 � 10�3 1:27 � 10�2 2:33 � 10�4 7:79 � 10�4 2:39 � 10�2

2:32 � 10�4 3:46 � 10�4 5:41 � 10�3 6:91 � 10�5 2:67 � 10�4 1:12 � 10�2

r 2.00 1.93 1.30 1.80 1.60 1.14
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these points, and the momentum equation is advanced. We modify this procedure in our tests to iterate until the velocity is
within some tolerance of the extrapolated value. Further details on the discretization are in Appendix A.2. Although setting
the grid values by this extrapolation gives an even larger truncation error (order one) for the discrete Laplacian, the solution
to the momentum equation is still second-order accurate. We have verified that in the absence of the projection, the solution
to the momentum equation is second-order accurate in space and time (results not shown).

The results of the refinement study are presented in Table 4. In all norms and for both components of the velocity, the
convergence appears to be between first- and second-order. Comparing with the results of the previous test, the estimated
errors in this test are generally larger, except in the max-norm of the vertical velocity on the finest mesh.

There are two significant differences between this forcing method, and the method presented previously. First, the way in
which the boundary conditions on the embedded boundary are enforced is different, and second, the velocity on the exten-
sion is nonzero in the forcing method. Since this method would give second-order accurate results without the projection, it
appears that it is the nonzero velocity on the extension which is giving larger than expected errors.

As argued in Section 4.4, we expect the velocity on the extension to go to zero as the mesh is refined. In Table 5 we show
the 1-norm and max-norm of the velocity on the extension, and indeed it is going to zero as the mesh is refined. The large
errors are arising from the lack of smoothness in the velocity across the extension. It is the size of the jump in the velocity
Table 4
Refinement study for Navier–Stokes equations using a forcing method.

h u v

kek1 kek2 kek1 kek1 kek2 kek1

2�5 2:89 � 10�2 2:61 � 10�2 1:75 � 10�1 6:97 � 10�3 1:10 � 10�2 1:31 � 10�1

2�6 8:25 � 10�3 1:11 � 10�2 1:21 � 10�1 4:01 � 10�3 6:76 � 10�3 6:61 � 10�2

2�7 2:40 � 10�3 2:50 � 10�3 3:58 � 10�2 1:04 � 10�3 1:70 � 10�3 2:22 � 10�2

2�8 2:38 � 10�3 1:77 � 10�3 1:14 � 10�2 8:36 � 10�4 1:08 � 10�3 6:01 � 10�3

Order 1.26 1.38 1.36 1.11 1.21 1.49

Table 5
Norms of the velocity on the extension as the grid is refined.

h kuextk1 kuextk1 kvextk1 kvextk1

2�5 2:12 � 10�1 8:23 � 10�1 1:05 � 10�1 5:74 � 10�1

2�6 9:84 � 10�2 6:26 � 10�1 5:75 � 10�2 3:04 � 10�1

2�7 5:13 � 10�2 3:69 � 10�1 2:82 � 10�2 1:45 � 10�1

2�8 2:69 � 10�2 1:97 � 10�1 1:35 � 10�2 8:61 � 10�2

Fig. 9. Plot of ux computed using a finite difference along the line y ¼ 0:328125 computed from the (a) forcing method and (b) method in which the
intermediate velocity is extended by zero. The dashed line denotes the physical location of the embedded boundary. The results are shown for two different
mesh spacings. Squares are used for h ¼ 2�5, and circles are used for h ¼ 2�7.
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gradient which controls this error. In Fig. 9 we show ux computed with a finite difference along a line of fixed height for both
the forcing method and the method in which the velocity on the extension is set to zero. In the forcing method the velocity is
smooth across the interface, but there is a large jump in the derivative at the second point inside the extension. The size of
the discontinuity in the derivative is much larger in the forcing method than in the other method. This explains the much
larger errors observed in the forcing method.

These plots also suggest why the error in the max-norm decreased at a faster rate than our analysis predicts. It is not be-
cause the method is more accurate, but that the size of the jump in the derivative is decreasing as the grid is refined. Thus the
size of the first-order error introduced from the lack of smoothness is decreasing, giving the illusion of faster convergence.
Also, the jump in the derivative occurs one grid cell inside the extension, rather than at the boundary between the physical
domain and the extension.
6. Discussion

In this paper we presented analysis and numerical tests aimed at understanding how well, if at all, projection methods
work when the projection is performed over an extended domain that includes regions outside the physical domain. This
work was motivated by direct forcing methods, in which the equations of motion are solved on these extended domains.
In general, one expects the flow on the extended domain to affect the flow on the physical domain through the projection.
The intermediate velocity field that arises in a projection method is not arbitrary; it is close to a divergence-free field. This is
the key reason why projection methods on extended domains work. For the spatially continuous problem, we showed that
the error in performing the projection on the extended domain is of the same size as the error introduced from the projection
method on the original domain.

Generally, the intermediate velocity that arises from direct forcing methods is not smooth across the embedded bound-
aries. When performing the projection discretely, this lack of smoothness introduces a large error near the embedded bound-
aries. We analyzed the accuracy of the discrete projection by extending the results of Beale and Layton [22]. We showed that
the projection is first-order accurate in the max-norm when the intermediate velocity is only continuous across the embed-
ded boundaries. Numerical tests showed that this error is highly localized near the embedded boundaries, and as a result, we
observed second-order convergence in the 1-norm, although when the projection was combined with a direct forcing meth-
od to solve the incompressible Navier–Stokes equations, the convergence rate depended on the method used to solve the
momentum equation.

Several papers have commented on the treatment of the velocity on the extension. Fadlun et al. [4] and Zhang and Zheng
[8] compared letting the velocity evolve on the extension and setting it to the value of the solid body after each time step.
Both papers concluded that there is little difference in the results, although they did not quantify the difference. We argue
that as discrete time and space are refined, the velocity on the extension will converge to the velocity of the solid body, and
so it is not surprising that these approaches gave similar results.

From our analysis, we conclude that the dominant error in projecting on the extended domain is caused by the lack of
smoothness of the intermediate velocity across the internal boundaries, not the flow on the extension. This explains why
others have observed that the treatment of the extension does not strongly influence the flow on the physical domain. In
our numerical tests, we observed smaller errors when the velocity was reset on the extension. This is partly because the
jumps in the derivatives of the velocity were smaller when the velocity was reset.

Fadlun et al. [4] speculated that the projection worked in their forcing method because the gradient portion of the inter-
mediate velocity was effectively zero on the embedded boundaries, although they did not provide any numerical evidence to
support this conjecture. This argument can be formalized to show that if the gradient portion of the intermediate velocity is
indeed zero on the embedded boundary, then the projection is independent of the extension provided the extension is diver-
gence-free. A zero gradient may result in some specific problems, but it is not generally true that this gradient field would or
should be zero [15]. In our numerical tests we observed a nonzero pressure gradient near the embedded boundaries. This
paper provides a more complete picture of why projection methods can be used with direct forcing methods.

According to our analysis, the solution will generally be first-order accurate in the max-norm, regardless of the accuracy
of the method used to advance the momentum equation. In practice, one may observe higher rates of convergence. The first-
order error is proportional to the size of the jump in the velocity gradient across the embedded boundaries. If the jumps in
the derivatives are small, the error from the lack of smoothness may be smaller than other errors in the problem.

Some papers on forcing methods have reported second-order convergence in max-norm [5,6,16], which appears contrary
to the analysis presented in this paper. Our analysis predicts that the limitation on accuracy arises from the lack of smooth-
ness of the intermediate velocity across the embedded boundary. In the refinement studies of [5,6], the velocity field tested
was chosen to be smooth across the embedded boundary, and so their results are consistent with the predictions of this pa-
per. In more general tests, one will not have a smooth extension across the embedded boundary. The analytic results from
this paper and the recent numerical results from [16] indicate that further investigation on higher-order accuracy is needed.

Our numerical tests involving the Navier–Stokes equations showed that the convergence rate depends on the type of forc-
ing method used to solve the momentum equation. We obtained approximately first-order convergence in the max-norm
and second-order convergence in the 1-norm and 2-norm when the momentum equation was solved only on the physical
domain and the velocity on the extended domain was set to zero. The convergence rates in the max-norm and 1-norm agreed
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with those from the test of the projection alone. The better convergence in the 2-norm resulted because the first-order errors
were concentrated at only a few points near the boundary, while in the test of the projection alone the larger errors were
more uniform along the boundary.

The convergence rate of the forcing method in which the extended domain and the physical domain were coupled in the
discrete momentum equation was between first- and second-order in both the max-norm and in the integral norms. The
leading-order error is controlled by the jump in the derivative of the intermediate velocity across the embedded boundary.
For this method, the effective jump decreased as the grid was refined, which gave the illusion of better than first-order con-
vergence. The slower convergence in the integral norms indicates that the error did not remain concentrated near the
embedded boundary. This may result from the stronger coupling of the physical domain and the extended domain in the
discrete momentum equation.

In this paper we did not address the many different ways of using forcing to enforce the boundary conditions in the
momentum equation. We only analyzed how performing the projection over the extended domain affects the accuracy of
the method. It would be interesting to explore how the different treatments of the momentum equation affect the accuracy.
Such a comparison is beyond the scope of the current paper. However, we comment on methods which use discretized delta
functions to transmit the force from the immersed boundary to the Cartesian grid [6,7]. These methods effectively smear the
location of the boundary over several grid cells, and so the intermediate velocity is thus seemingly smoother near the bound-
ary. This smearing does not lead to higher-order accuracy because the intermediate velocity that results is generally only
first-order accurate near the boundary [17–19] and because as the mesh is refined, the region over which the smearing oc-
curs goes to zero. Despite the local smoothing, the velocity is again approaching a function that is not differentiable across
the boundary.

Finally, we comment on how one might design a forcing method to obtain a second-order accurate velocity. To achieve
this accuracy, the intermediate velocity must be differentiable across the embedded boundary. Since there is some freedom
in the treatment of the velocity on the extension, it may be possible to force the velocity to be smooth across the embedded
boundary. Since the larger errors remained highly localized in some of our numerical tests, it may be sufficient to ensure that
the jump in the derivative occurs further inside the extended domain, away from the embedded boundary. It is not clear how
to design efficient methods to achieve this smoothness. Additionally, one must be careful to avoid introducing a large gra-
dient field on the extension, in which case our analysis breaks down, and convergence to the correct solution is not
guaranteed.
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Appendix A. Discretization details of Navier–Stokes tests

A.1. Zero velocity on extension

Given the velocity field, pressure, and pressure gradient at time level n, the solution is advanced in time in five steps,
which are described below.

(1) Advection terms: The advection terms are differenced in conservative form r � ðuuÞ. They are approximated at the
half-time level by
r � ðuuÞnþ1=2 ¼ 3
2
r � ðuuÞn � 1

2
r � ðuuÞn�1

: ðA:1Þ

The spatial differencing is performed with a centered difference. For example, the component of r � ðuuÞ in the x-
direction is computed by

ððuuÞx þ ðuvÞyÞiþ1=2;j ¼
ðuuÞiþ3=2;j � ðuuÞi�1=2;j

2h
þ
ðuvÞiþ3=2;j � ðuvÞi�1=2;j

2h
: ðA:2Þ

Because a staggered grid is used, u and v are stored at different spatial locations. One of the velocity components must
be spatially averaged to compute the products uv. In the difference formula above this product is computed by

ðuvÞiþ1=2;j ¼ uiþ1=2;j
v i;j�1=2 þ v i;jþ1=2 þ v iþ1;j�1=2 þ v iþ1;jþ1=2

4

� �
: ðA:3Þ

The component in the y-direction is computed similarly. No modifications to differences are made near the
embedded boundary. This introduces an Oð1Þ local error, but contributes only an Oðh2Þ error to the solution of
the momentum equation.
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(2) Viscous terms: The viscous terms are discretized implicitly, using Crank–Nicolson discretization in time:
u� � un

Dt
¼ �rpn þ 1

2
ðDu� þ DunÞ þ gnþ1=2; ðA:4Þ

where the term gnþ1=2 includes the advection terms and background forces. The Laplacian is discretized using the stan-
dard, five-point, second-order difference away from the boundary. Adjacent to the embedded boundary the stencil is
modified as described in Section 5.2.1. The physical domain and the extended domain decouple in this discretization.
The discrete equations are solved using SOR.
(3) Reset intermediate velocity on extension: Before projecting the intermediate velocity is set to zero in the extension.
(4) Projection: The projection is performed over the extended domain, ignoring the embedded boundary. The projection

is performed as described in Section 4.5 using Eqs. (26) and (27). The discrete equations are solved using multigrid.
The pressure and the pressure gradient are updated by
pnþ1 ¼ pn þ /
Dt
; ðA:5Þ

rpnþ1 ¼ rpn þr/
Dt

: ðA:6Þ

This pressure update is only first-order for the pressure, but this error does not affect the error in the velocity field
[23].
(5) Reset velocity on the extension: After performing the projection, the velocity field is reset to zero on the extended
domain.
A.2. Forcing method

For the forcing method the advection terms and projection are handled exactly as described above. The forcing method
differs from the method described in Section A.1 in two ways. The velocity is never reset on the extension, and the boundary
conditions on the embedded boundary are enforced using direct forcing rather than modifying the stencil.

The momentum equation is again discretized in time using Crank–Nicolson:
u� � un

Dt
¼ �rpn þ 1

2
ðDu� þ DunÞ þ gnþ1=2 þ f ; ðA:7Þ
where, as before, gnþ1=2 includes the advection terms and any background forces, and f represents the forces needed to en-
force the boundary conditions on the embedded boundary. The forcing terms are applied only at the points in the extended
domain adjacent to the embedded boundary. We call these the forcing points. The forces are chosen so that the velocity field
at these forcing points agrees with a velocity that is interpolated using points only from the physical domain and on the
embedded boundary. The interpolation scheme is that used by Kim et al. [5], which is described below.

Algebraically, the interpolation can be written as
B1u� þ B2ub ¼ IFu�; ðA:8Þ
where B1 and B2 are matrices defined by the interpolation scheme, ub represents the velocity evaluated at a set of discrete
points on the embedded boundary, and IF is the diagonal matrix corresponding to the discrete characteristic function of the
forcing points. The left side of this equation is the velocity interpolated to the forcing points from the physical domain and
the boundary points, and the right side is the value of the velocity at the forcing points.

Because the scheme is implicit, applying the forcing is not as straightforward as described by Eq. (4). Eqs. (A.7) and (A.8)
together determine the velocity and force. To approximately solve this coupled system of equations, we use the iteration
u�;kþ1 � un

Dt
¼ �rpn þ 1

2
ðDu�;kþ1 þ DunÞ þ gnþ1=2 þ f k

; ðA:9Þ

f kþ1 ¼ f k þ B1u�;kþ1 þ B2ub � IFu�;kþ1

Dt
: ðA:10Þ
This iteration is performed until kf kþ1 � f kk1 < 1, which is sufficient to obtain second-order accuracy in space and time.
The accuracy of this scheme was tested, and in the absence of the projection, the solution is second-order accurate in space
and time in the max-norm. We experimented with a tolerance of OðDtÞ, and the results did not change significantly.

To complete the description of the scheme, we give the details of the interpolation scheme, which is the scheme used by
Kim et al. [5]. There are two types of forcing points: those with one neighbor inside the physical domain and those with two
neighbors inside the physical domain. We ensure that there are no forcing points with three neighbors in the physical do-
main. First consider the case of a forcing point which has only one neighbor point in the physical domain. See Fig. A.1(a and
b). Note that the figure is drawn as a node-centered grid for simplicity, but in the computation we use a staggered grid. There
are five labeled collinear points in Fig. A.1(a and b). The point F is where the forcing is applied. Points A and C are mesh points
in the physical domain. Point B is on the boundary in between points F and C at a distance ah away from point F, and point I is
distance 2ah away, where 0 < a < 1.
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Fig. A.1. Solid circles represent the points used in the interpolation from the physical domain to the forcing point, which is represented by the open circle.
(a and b) The interpolation is performed by two successive linear interpolations. First to the point I, represented by the square, followed by linear
extrapolation to point F using the values at I and B. (c) The value at point B is set so that the bilinear interpolant through points A, D, C, F satisfies the
boundary condition at point B.
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The interpolation formula is derived in two steps. First the velocity is interpolated to point I using either points C and B, as
in Fig. A.1(a), or using points C and A, as in Fig. A.1(b). The interpolated value at point F, UF, is then linearly extrapolated using
the values at points I and B. Combining these two interpolations gives the formula
UF ¼
1

1�a UB � a
1�a UC if a 6 1=2;

2UB � 2ð1� aÞUC þ ð1� 2aÞUA if a > 1=2:

(
: ðA:11Þ
Next consider the case when the forcing point has two neighbors in the physical domain, as depicted in Fig. A.1(c). As
before, point F is where the forcing is applied. Points C and D represent the neighbor points in the physical domain and point
A is the common neighbor point to points C and D. The boundary is approximated as a linear function through the two points
where the boundary intersects the line segments CF and DF. The value at F results from requiring that the bilinear interpolant
on ADFC satisfy the boundary condition at point B. This gives the interpolation formula at point F as
UF ¼
1

ð1� aÞð1� bÞUB �
a

1� a
UC �

b
1� b

UD �
ab

ð1� aÞð1� bÞUA; ðA:12Þ
where
a ¼ ab2

a2 þ b2 and b ¼ a2b

a2 þ b2 : ðA:13Þ
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